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PREFACE

The study reported in this Note represents a first step toward

alleviating some of the problems inherent in current computer modeling

techniques. It suggests a form for a new modeling methodology free of

many of the constraints of existing methods. This discussion should be

of interest to researchers in modeling and simulation and to those

responsible for the planning or sponsoring of such research. It may

also be useful to persons who conduct, plan, or fund research in other

activities that employ modeling.

Funding for this work was provided by The Rand Corporation from its

own corporate research funds.
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SUMMARY

Computer technology has yet to provide the modeling enterprise with

adequate tools, with the results that

o Modeling has become confused with simulation.

o Modelers are artificially constrained to state-transition

models.

o Modelers cannot adequately deal with complex models.

o Modelers often obtain numbers but not insight.

o Quantitative and qualitative models cannot be gracefully com-

bined.

Research that might alleviate these problems is discussed in this

Note.

If such an ambitious program is to succeed, we must develop a

language that can smoothly express quantitative and qualitative notions

in the context of a stand-alone model. The Note describes one small

step in this direction. We chose to model a little girl bouncing c

ball. This situation involves both physical constraints and human

decisionmaking, in a tightly intertwined manner. We have developed

model of this situation and an illustrative language for expressing that

modei. This exercise turned out to be very useful in demonstrating the

importance of a stand-alone model and of the ability to smoothly combine

qualitative and quantitative model elements.

The Note's program also depends on some improvement in automatic

deduction. That issue is discussed.
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I. INTRODUCTION

At least since the ancient Greeks, people have used models to

understand and control aspects of reality. In recent years, models have

been playing an ever more crucial role in our society. Models are used

for prediction, for the vicarious or risk-free acquisition of

experience, for the clarification of partially formulated ideas, and to

communicate, control, store, and retrieve data. Unfortunately, the

tools available for constructing the large, complex computer models

required for such tasks have often proved inadequate for the demands

placed on them. Although real-world situations usually have both

qualitative and quantitative aspects, models constructed using currently

available methods necessarily focus on one aspect and ignore the other.

In particular, models created to deal with complex social and

biological processes are generally of a special restricted form: what

are usually called simulations. Here, the restrictions under

which existing methods have forced modelers to work have been compounded

by terminological confusion. Since the only models in general use tend

to be computer simulations, the habit has developed of using the terms

"computer model" and "computer simulation" interchangeably, thus

effectively obscuring the very possibility of breaking out of the

confines of existing methods.

We believe that a new modeling methodology free of many of the

constraints of existing methods is needed. This methodology should

perm-r expression of both quantitative and qualitative elements in a

single unified model that is conceptually independent of its computer
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implementation. The primary objective of this Note is to outline one

form such a methodology could take and to indicate the kind of research

needed to develop it into a useful system.

We shall present a discussion of some existing modeling methods and

their limitations. Finally we shall study as a "toy" example the

phenomenon of a little girl bouncing a ball, to show what will be

involved in providing modeling that can be used to deal with both

quantitative and qualitative relationships.

This Note barely scratches the surface with a preliminary

exploration of possibilities. Serious development of the methodology we

outline will be a large undertaking. But even modest practical success

will be worthwhile. For the full scope of what we propose amounts to

nothing less than automation of a significant part of the scientific and

engineering enterprise.

DEFINITION AND DEVELOPMENT OF MODELING

We define a model as the more or less formal representation of an

idealized aspect of reality. A model is obtained in two stages of

abstraction from the real world. The first step is to simplify and

idealize what is being studied, for the purpose of eliminating

irrelevant complexities and permitting theoretical analysis. The second

step is to state in precise (this usually means mathematical) language

various key presumed facts about this idealization; these facts are the

"faxioms" of the model. Using the model then requires manipulating the

axioms by appropriate formal techniques, which have the character of

<deductions>, in order to obtain appropriate information.
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The models that especially call for development of a new modeling

methodology have traditional mathematical components, as well as

additional organizational, socio-political, or human-behavioral

components. We label these two classes of components, respectively,

"quantitative," and "qualitative." The distinction between them is

important in understanding the limitations of present computer models.

By "quantitative," we refer to the mathematical representation of

relationships, from Newtonian mechanics to the contemporary models.

Quantitative models tend to emphasize the numerical aspects of

situations, use continuous rather than discrete abstractions, and be

conceived of in terms of traditional mathematical notions such as

algebraic expressions, integrals, and partial derivatives. Although

quantitative models of some portions of reality are now quite

sophisticated, they can not express logical relationships and non-

numeric attributes of entities.

Computers have greatly amplified the power of preexisting models.

Numerical answers can now be obtained quickly that in precomputer times

would have required many man-years of computation, and even problems

whose solution would once have been utterly unfeasible have now been

brought into the range of what can be routinely accomplished. But this

amounts to using computers only as a peripheral aid in the modeling

process. The models themselves retain their "back-of-the-envelope"

character, capable of succinct statement and of being understood as a

single whole by those who use them. The steps in proceeding from the

model to a computation are clearly defined and separate: First,

relationships between quantities are deduced from the axioms of the
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model; next the variables are distinguished as independent and

dependent, and an algorithm is specified for computing the values of the

dependent variables given values of the independent variables as input

(this step may well require the use of iumerical analysis); finally, a

computer program which implements this algorithm is written and run.

This is in contrast to the use of computers as an integral part of the

modeling process itself. Typical computer models--especially those

developed in the biological and social sciences--are not succinctly

expressible. They tend to exist only as (often quite large) computer

programs. And they have made it possible to model processes that were

beyond the scope of precomputer modeling methodology.

As already indicated, these computer models tend to be of a very

special kind, simulations, leading to the unfortunate terminological

confusion to which we have already alluded. We will argue that this

limitation, although in large part forced on computer modelers by the

nature of the software facilities available to them, has extremely un-

desirable consequences. The new methodology that we will outline would

permit computers to manipulate models that have many of the virtues of

back-of-the-envelope models but that are on a scale suitable for modeling

complex social and biological processes.

SIMULATORS, SIMULATIONS, AND MODELS

Before the advent of computers, simulators were simply systems

certain of whose properties were both easily determinable and linked to

corresponding properties of a (usually larger and more complex) system

about which information was desired. Examples are a model airplane in a



-5-

wind tunnel as a simulator of actual aircraft in flight, a physical

relief model of the Mississippi Valley (actually constructed for the

U.S. Army Corps of Engineers) used as a simulator of water flow in the

Mississippi Valley, or even an experimental group of individual human

beings as a simulator of various kinds of social interaction. Each

fixed use of such a simulator was a simulation, e.g., use of the wind

tunnel with a certain airflow, pouring water in a particular way on the

relief model of the Mississippi Valley.

Before computers were available, mathematical models had to be

capable of direct manipulation by a user-scientist. This placed

distinct (in fact very uncomfortable) bounds on the complexity of

models. A model too complicated to be held all-at-once (or at least

almost so) in the mind of the modeler could not be used, however well it

mirrored the phenomenon under investigation. The coming of the large-

scale digital computer opened a path to the use of really complex

models. But so far the path has been narrow and constricted. To date,

the software that has been made available by computer scientists and

engineers to modelers is not designed for the general manipulation of

models conceived as formal structures. The one option that has been

available in the use of really complex models is the development from

such models of computer programs which cause a computer to behave as a

simulator of the phenomena being studied. Although such computer

programs are often constructed in a rather ad hoc manner, we can

describe what is conceptually involved: A model is developed (either

directly or from a model already known) which gives a sequential

description of the states of a system. Using a discrete representation
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of time, we can conceive of such a model as specifying the initial state

of a system (i.e., at time 0) and givinR precise rules for cale-iiliting

the state of the system at tim2 it + 1 from the state at time n. We will

call such a model a state -tra nsition model. A computer program

that carries out the computations specified by such a state-transition

model can then be regarded as a simulator. (MIore accurately, it is the

computer executing the program which constitutes a simulator as we have

been using the word, but we will not fuss over this pedantic

distinction.) A computer simulation is obtained when a simulator is

supplied with appropriate data (specification of the initial state as

well as the values of parameters) and with necessary utility programs,

e.g., report generators.

Widespread use of this kind of computer simulation has made

possible practical solutions to problems that would otherwise have been

intractable. But there has been insufficient fundamental analysis of

what is really involved in this use of computers. Computer simulation

has developed in such a natural and unselfconscious manner that not

enough attention has been paid either to the implicit methodological

presuppositions or to what is lost in restricting oneself to models that

have such a very special character. In particular, the very fact that

computer modelers have been laboring under this restriction is not only

rarely mentioned, but has even been made difficult to perceive by the

very language used; the terms "computer model" and "computer simulation"

are often used more or less interchangeably.



-7- 7

INADEQUACIES OF CURRENT METHODS OF COMPUTER SIMULATION

Since we are proposing a new methodology for computer modeling, the

development of which will require considerable resources, it is

incumbent on us to show explicitly that the method of computer

simulation currently employed has serious inadequacies.

Analyzing the behavior of a model is vital--indeed, it is usually

the reason for the model's existence. If the model of a process is

stated in mathematical notation, centuries of accumulated wisdom can be

brought to bear in its analysis. The symbolic formula can be

differentiated and, perhaps, the sign of a quantity can be determined

over an interval, using purely analytic--as opposed to numeric--

techniques. That information might lead to important simplifications

and insights, without our performing a single numerical calculation. In

fact, we believe that information can be communicated more effectively

to people through such general statements as "X increases when Y/Z

decreases" than through computational results that imply that

relationship. Such statements are perhaps best generated by applying

analytic tools directly to the symbolic representation of a model. If

the only formal representation of a model is a FORTRAN program, the

power of such analytic techniques is lost. The code can only be

executed, often resulting in numbers, not insight.

It is the underlying model that people want to operate on, to

understand, to communicate to one another, even to alter. In practice,

it is often the case that the only complete description available of a

computer simulator is the computer program itself. The designers will

not have troubled to specify explicitly the underlying state-transition



model on which they based the program. As a result, a host of

assumptions of very different degrees of importance and reliability are

buried in the program.

These assumptions are almost impossible to retrieve, especially if

it has been sane time since the program was written, and therefore they

are almost impossible to assess or change. They are also commingled in

ways that make it very difficult to know the effect of each on some

important conclusion being drawn from the simulation. Parts of the code

may represent assumptions that are regarded as accurate and well-

founded. Other parts may represent assumptions that are regarded

skeptically or as being only approximately correct. Others may be

derived by using numerical analysis with an appropriate error analysis.

One of the dangers implicit in the use of computer simulators is

that the modeler may be forced to represent an assumption that is well

believed but is not equivalent to a state-transition assertion (e.g., an

inequality instead of an equation) by a code which expresses a far

stronger relationship than experts in the field would be willing to

assert as reliably known. Thus, a computer simulation might give

results having a high degree of precision that is in no way justified by

what is really known about the phenomenon being simulated.

These considerations make clear that it may be difficult to infer

from the results of a computer simulation how sensitive those results

are to the particular values of parameters that may have been used.

When there are many such parameters, vitally important sensitivity

analyses either cannot be carried out at all or can only be carried out

in a limited and/or prohibitively expensive manner. This difficulty in
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conducting sensitivity analysis can be crucially significant when

simulations are used in making important decisions.

Even if we ignore all the above considerations, computer

simulations have serious limitations as models. State-transition

models, in principle, can do only one kind of analysis, can answer only

one kind of question: If a system has a given (total) state at time 0,

what is its state at time n? This question may or may not correspond to

what a user really needs to know. Furthermore, a state-transition model

cannot perform any analysis unless it has total information about a

state, whether or not this is needed for the problem at hand. A user

cannot ask a computer simulation, "What initial state will produce a

certain desired state at time n?" or "Given that at time n two key

parameters have certain values (i.e., one knows part but not all of the

state at time n), what can one say about these parameters at time n +

1?" A user can never derive a general statement such as "if x > y at

time 0, then x > y at all subsequent times," using a computer simulator.

We believe that an intangible but critically important consequence

of these limitations is the effect they have had on the mindset of

computer scientists and users. Information about the domain being

modeled must be expressed in the state-transition format no matter what

violence this procrustean treatment does to our knowledge of the domain.

Consequently, we have conditioned ourselves to model domains in terms of

what the simulator can do rather than what we know or need to know about

the domain's possibly rich mix of quantitative and qualitative elements.
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PROSPECTUS FOR A NEW MODELING METHODOLOGY

Developing New Tools

Considering the growing importance of modeling, what do we propose

should be done about the inadequacies described above? As a minimum

goal, we would hope that these ideas will become well understood by

computer modelers, who will be led to construct computer simulations in

ways that meet some of our objections. In particular, this would call

for explicit statement of the underlying state-transition model in

mathematical language and a conscious separation of this model from the

computer program (i.e., simulator) that implements it. The program

itself should be written in a modular fashion so that it will be clear

at each point which parts of the program correspond to which assertions

of the underlying state-transition model. With this minimum policy one

would hope to do for computer simulation what the structured programming

movement has tried to do for computer programming.

But this minimum policy falls far short of what we feel to be

necessary. If computer technology is to begin to realize its potential

as a tool in the hands of modelers, information scier.tists will have to

provide an entirely new comprehensive modeling methodology. This

methodology should make it possible for modelers to express the most

diverse relationships--qualitative as well as quantitative--in computer

manipulable form. These relationships might take the form of algebraic

or differential equations, inequalities, logical interrelationships

among qualitative assertions, or even relationships among structures of

a kind not even envisioned by the designers of the underlying modeling



-11-

system (e.g., Feynman diagrams). Recognizing that the step from state at

time n to state at time n + 1 in state-transition models is really a

form (albeit an extremely limited form) of deduction, we must permit the

computer modeler to use the computer itself in making necessary

deductions of whatever sort from the basic relationships of the model.

We are thus envisioning a computer modeling facility in which a

user would be provided with a comprehensive but comfortable language,

extensible as necessary and capable of expressing the most diverse

relationships, together with efficient automated and semi-automated

deduction capabilities. The development of such a facility is of course

an enormously ambitious project that can be expected to require

sustained efforts over a considerable period. Nevertheless, if we are

to make proper use of the rapidly developing computer technology as a

basis for modeling, such an effort should be begun.

If
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II. A LITTLE GIRL BOUNCES A BALL

In developing the kind of comprehensive modeling facility we have

been envisioning, various crucial design decisions will need to be made.

Such decisions can be made in an intelligent manner only after

preliminary efforts to construct models of phenomena similar to those

which the system being developed is expected to model. Ideally such a[

facility should be able to model phenomena involving complex

combinations of physical, biological, psychological, and social factors.

Some of the axioms, particularly those dealing with the physical

aspects, can be expected to be "quantitative," that is, to take the form

of equalities (numerical or matrix), differential, difference, or

integral equations, and inequalities. In addition, we must expect

axioms of a more "qualitative" nature, which, for example, express

logical relationships. Some axioms will have both quantitative and

qualitative features.

As a first approach to modeling phenomena that involve both people

and physical systems, we have chosen to attempt to model a little girl

bouncing a ball. Our model will thus have to deal with the physics of

the bouncing ball as well as the behavior of the little girl. We are

not going to attempt a complete model of this phenomenon. Rather, we

shall exhibit and discuss some appropriate axioms and their

consequences. This will be enough to indicate how a rich and

complicated phenomenon having quantitative as well as qualitative or

even psychological aspects can be modeled. We will not attempt to

delimit an appropriate formal language in which our model could be
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written. However, some necessary features of such a language will

emerge from the mathematical form of our axioms.

Consider the behavior of a baseball outfielder who observes a ball

being hit by a batter and runs to successfully position himself

underneath the ball. An appropriate model of the ball's behavior is

that it travels in a parabola, its height at time t (measured from the

instant the bat strikes the ball) being given by: h = At + Bt2 for

suitable constants A, B. What might an appropriate model of the

ballplayer's behavior be? If we think in terms of a "real" person and

try to imagine what is "really" happening in his mind and body, the

obstacles (in the present stage of human knowledge about such matters)

are surely insurmountable. What if instead we are saticfied with a

model that successfully predicts his behavior? Then we may introduce a

notion of "belief," as in "The ballplayer believes," and seek

appropriate axioms governing this notion. One such axiom might take the

form:

The ballplayer believes the batted ball travels in the

parabola h = At + Bt2.

It is both difficult and important to learn to work with such assertions

in a nonanthropomorphic manner. One may perfectly well adopt such an

axiom knowing that the particular ballplayer being modeled never could

pass algebra in school and knows nothing of parabolas.

The point of view being suggested has some points of contact with

issues in the philosophy of science. According to some schools of

thought, the correctness of a scientific theory (which is not very

, ilhl



-14-

different from what we have been calling a model) is entirely a question

of its ability to toLLeUtly piedict what is observed. Others insist

that more is required. Fortunately, we can remain entirely neutral on

these issues. For us it is enough that the usefulness of models for our

purposes depends only on their ability to yield correct predictions.

In our model, time will be modeled as a real positive parameter t.

We write T for the set of positive real numbers. Various physical

objects (including the little girl) will be modeled as sets of small,

disjoint parts called particles. In particular, GIRL is to be the set

of particles making up the little girl. We shall use the letters p, q,

r for particles. The ball will be modeled as a particle. For any

particle p (which may or may not be a part of the girl) cgt(p) is to be

the center of gravity of p, a point of El (three-dimensional Euclidean

space), at time t. Similarly, cgt(Ball ) is to be the center of gravity

of the ball at time t. We will write 0t a to mean that the girl

"believes" or "knows" a at time t. (More will be said about this

later.)

Some of our axioms will record appropriate information about the

physical behavior of the girl's parts. For example:

(Vt t T) (yp,q E GIRL) [cg t(p) = cgt(q) - p = q]tr

(This axiom expresses the fact that no two parts of the girl's body can

be in the same place at the same time.) We think of E3 as a real

inner-product space, so that for any x, y E El, angle (x,y), where 0 S

angle (x,y) < w, is well-defined (e.g., as the angle whose cosine is the

inner product of x and y divided by IxIOJyJ). Another pair of axioms
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give restrictions on the girl's ability as a contortionist. Namely,

d
(Vp,q E GIRL)[ d7 I cgt(p) - cgt (qj ) < A(p,q)]

(Vp,q,r v GIRL)

d
I-f- angle (cgt (p)) - (cg (r)), cg (q) - (cg (r)) I < B(p,q,r)]

Here the bounds A,B will change as the girl's abilities to manipulate

her body improve.

Axioms can be given which govern the motion of the ball. For

example, the following expresses the ball's "law of motion":

d 
2

(3FCT)[F is finite & (Vt E T-F) - cgt(Ball) = g(t) I

dt
2

Here F is to allow for the instants when the ball comes in contact with

an obstacle and "bounces" or stops; g(t) gives the force of gravity and

(at least if we confine ourselves to the surface of the earth) could be

taken to be constant. Additional axioms can be written to express the

elementary geometry and physics of the ball's "bouncing." These axioms

will involve a coefficient of eldsticity X.

Now we come to axioms involving 0 " From a logical point of view,

o satisfies formal rules like those satisfied by so-called "modal"
t

operators, and indeed this consideration has suggested the notation we

are using. Our intuitive idea is that the girl herself works with a

model of the bouncing ball. The interpretation we suggest for "0 a"
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is: The sentence a is part of the girl's model at time t. It turns out

to be surprisingly diffirlt to avoid the mistake of anthropomorphizing

the "little girl." For naturally, when we write axioms of the form a
t

a, we in no way intend to indicate any belief on our part that the

flesh-and-blood little girl truly believes a. What we are claiming is

only that the behavior of the flesh-and-blood little girl will be

predicted by a model of her in which she believes a. To help in

avoiding this confusion we will write the word GIRL in capitals to

indicate our model of the girl, whereas we will reserve lowercase for

the flesh-and-blood little girl. Thus when 0t a is in our model, we may

say: The GIRL believes (or knows) a (at time t). As an example, the

perception axiom:

(Vt, t' e T)(Vp,q) (Vx,y,z Z E3 )

{ot , cgt (p) = x & cgt(q) = y & cgt(eye) = z]

jangle cgt(p)-cgt(eye), cg t(q)-cg t(eye) - angle (x-z,y-z)l

5 C(t,t')).

Roughly speaking: If the GIRL believes that at some past (or future)

time a pair of particles and her own eye will be at certain places, then

at that past (or future) time, the location of the particle bears a

definite relation to the belief.

Another set of axioms bear on the GIRL's ability in logic. Let r

be a suitable set of axioms for the predicate calculus requiring only
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modus ponens as a rule of inference. Then we assume completeness axioms:

(Vt e T) 0 t a, for all a c r.

(Vt E T) (Va,O) [(0 t a & 0 t (a )) t

Together these axioms imply that the GIRL can carry out any logical

deductions whatever. (Needless to say, it is only the GIRL to whom we

are imputing such virtuosity, not the little girl.) It may also be

helpful to assume that the GIRL preserves a high degree of self-

consciousness:

(vt,t' T)(ya)[(t' ? t & o t  a) Ott, o t a

What does the GIRL know about the ball? We assume that the GIRL

knows the axioms governing the ball's motion. In particular,

(Vt' E T) [o t , (3F T) F is finite &

d2

(Vt E T-F) - cgt(Ball) = g(t) I

dt
2

That is, the GIRL knows the ball's law of motion. However, note that

the gravitation function G is permitted to depend on t'. This permits

the GIRL to "learn" better values for G. And in fact, as she becomes
I.

more skilled at ball bouncing, the value of G(t,t') will tend toward the

true value g(t). Also, we are assuming that the GIRL knows axioms about

bouncing. In this case, the value X of the coefficient of elasticity is

a function of t' and may change with the GIRL's experience.

An extremely important assumption is the autonomy axiom:

(Vt E T)(Vp c GIRL)(CVx e E2 )[ot(cgt(p) = x) *cg t (P) = x.
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Thus, if the GIRL knows at a given time that some part of her body is at

a given place, then it really is. The key role of the Autonomy axiom is

to relate what the GIRL believes to what actually holds. As a

consequence of the autonomy and completeness axioms we can show that the

GIRL's beliefs at any time are consistent. For, suppose that for some

sentence a, 0t a and 0t - a. By the completeness axioms, we have first

0 (a (~ a )
t

for any sentence 5 whatever (since a a (~ a 6) is a tautology and

hence can be deduced from r using modus ponens), and then (using modus

ponens twice), 0t 5. Since 0 is arbitrary, we may choose it to have the

form: cg t(p) # x where in fact cgt (p) 0 x. But this contradicts the

autonomy axiom. Note also that the autonomy axiom actually prevents the

GIRL from having certain beliefs. She cannot believe that any parts of

her body will have positions other than their actual positions.

A final axiom which is useful for technical reasons is the

self-awareness axiom:

(Vt E T)(Vp,q E GIRL) (Vx,y c E 3 )

[t (cg t(p) = x v cgt(q) = y) 0 otcgt(p) = x v 0tcgt(q) = y].

This axiom expresses the GIRL's inability to know that one or another

part of her body is in some particular place without knowing which part

and where it is.

So far our axioms have imputed to the GIRL only "rational" beliefs.

But it should not be assumed that our modeling framework is limited to

such. The GIRL may believe that good ball bouncing requires nightly

recitation of prayers, or that the ball's intersecting pavement cracks
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must be avoided. There is no difficulty in incorporating such beliefs

by adding appropriate axioms.

For an illuminating deduction from our axioms, let us suppose that

our GIRL has tired of mere ball bouncing and has become devoted to

pinball machines. No change in our axioms is required; it is only

necessary to think of "ball" as representing one of the balls used by

the pinball machine. We suppose that the machine is equipped with a

pair of "flippers," one manipulated by a button activated by a finger of

the GIRL's left hand, the other by a button activated by a finger on the

GIRL's right hand. If she succeeds in hitting the ball with one of the

flippers, the ball remains in play. Otherwise it passes out of play.

We let t be the instant when the flipper could be activated and let

t' > t be a subsequent instant such that the equation cgt,(Ball) = xO

signifies that the ball is now passing out of play. Let if, rf be the

fingers in question. (Thus, if, rf E GIRL.) The left (right) button

being activated can then be rendered cgt(if) = za (cgt(rf) = zr ) . The

relationship we have been discussing can be represented by the following

equivalence (which we will call 1):

(1) cg t,(Ball) 0 x0 +-+ (cgt(if) = z V cgt(rf) = zt)

We suppose that (1) is not only true, but that the GIRL knows (1) at

time t:

(2) 0 t I

Furthermore, we suppose that the GIRL knows at time t that the ball will

remain in play:
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(3) 0 t (cg t,(Ball) x xO )

We proceed to show that the statement (3) of the GIRL's belief has

consequences for the "external" world. Namely, we claim that our axioms

together with (1), (2), (3) imply:

(4) cg t,(Ball) 0 x 0

The proof is quite simple. By the completeness axioms, (2) and (3)

imply:

o (cgtif) = z V cg (rf) = z
t tt r

By the self-awareness and completeness axioms:

(5) otcgt(£f) = zI V otcgt(rf) = zr

Now suppose that (4) is false:

cgt,(Ball) x 0

Then, by (1),

~(cgt(If) = z V cg (rf) = zr)

i.e.'

cgt(If) 0 z & cgt(rf) zr

So we have separately:

cgt(If) 0 z

cgt(rf) # zr
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By the autonomy axiom, these imply:

_C (cg t(it) = z)

-0 t(cg t(rf) = z d

But these last contradict (5).

What is interesting about this deduction is that we have no idea

whether it was the left or the right flipper which was in fact

activated. (Of course, by the self-awareness axiom, the GIRL does know,

but we do not.) This kind of indeterminate disjunctive inference is in

principle impossible for a state-transition model.

We now shift our example once again, this time to the GIRL learning

to serve the ball in a tennis game. We can think of the tactics of

tennis service as involving a tension between the desire to hit the ball

as hard as possible (so as to maximize the probability that the opponent

will be unable to return the ball) and the desire to avoid hitting the

ball so hard that it will go out of bounds. (In this simplified version

we are ignoring complicating factors such as spin.) Traditional

modeling techniques would suggest the use of probability theory. An

axiom might, for example, state that the ball is hit in such a manner

that the probability that it goes out of bounds is 20 percent. Now

there is nothing at all objectionable in the use of probability theory,

and there is no special difficulty in incorporating probabilistic

considerations into the kinds of models we have been discussing.

However, it is very interesting that by using our "belief" operator, we

can, without using probability, easily express the GIRL's "ci" of

trying to hit the ball so as not to go out of bounds, but otherwise, to
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hit the ball as hard as possible. We shall use two axioms: the first is

to the effect that the GIRL will actually carry out any persistent

future intention concerning parts of her body; the second that she

intends (or plans) to hit the ball so as to maximize its velocity

subject to the constraint that she not "know" that she is hitting it out

of bounds.

Let p = (plp 2,-...pn) be a vector of parts of the GIRL's body, and

let x = (xx 2,... ,x) be a corresponding vector of points of E 3. We

write:

n
S , (t) A (cgt((p) =x)

i=1

Note that by the autonomy and completeness axioms, we have for any p, x:

0 t S ,t) - S px(t)

The plan fulfillment axiom states:

(Vt)(3t0 < t)( )(Vx)[(V1)(t < T < t - o S (t))

0 0 

0 t S £,X(t) l

Next, let p0 = (p1
O ,.. .,pn ) be the particular array of parts of the

GIRL's body whose positions determine how the ball will be hit by the

racquet. For each vector x = (x,... ,xn) let g t(x) be the velocity

imparted to the ball (possibly 0) under the configuration

cg(Pi ) = x. , i = 1,2,...,n
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Let w stand for the statement "the ball is hit out of bounds," and let

M(x,t,t) abbreviate the statement:

0(S (t) -*w)

P ,x

Thus, M(x,t,r) asserts that at time t, the GIRL knows that if at time t

her parts are in the configuration corresponding to x, then the ball

will be hit out of bounds. The plan to hit-the-ball hard axiom then

states:

Ot 0 < t)(yr)(t 0 < T < t
0 0 -

0 (3x) (S 0 (t) & -M(x,t,T)

P 0

& C y)~HM(Y,t,T) - gt(x) > gt( )

These methods can be used to accommodate all manner of planning and

tactical situations. The problem of the "contrary-to-fact" implications

such as "if I hit the ball thus-and-so, then it will go out of bounds"

has been quite simply finessed.

The plan fulfillment axiom sheds interesting light on the

phenomenon of "follow-through" in such sports as tennis, golf, and

baseball. The follow-through is the trajectory of the racquet, club, or

bat after the ball has been struck. Players of these sports seek to

achieve a "good" follow-through. On the face of things, this is a bit

paradoxical: How can events which take place after the ball has been

hit have any effect on the ball's behavior? The answer is that what one

strives to learn is how to plan for an effective follow-through. Since

this planning takes place (in part) before the ball is hit, it can

perfectly well influence how it is hit. This is an example of an
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interesting insight obtained by reflecting on our model which could

hardly have been obtained using state-transition models.

Straightforward extensions of our methods should enable us to deal

with interactions among more than one individual. We can write, e.g.,

W a to mean that the i-th individual knows or believes a at time t.t

Then we can easily express such statements as "Mary serves to the rear

left court because she thinks that Sue expects her to move forward and

to the right."

We hope that despite the fragmentary nature of our example, we have

made clear both the possibilities inherent in the new modeling

methodology we propose and the large amount of work that remains before

they can be realized.
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III. AUTOMATED DEDUCTION

The use of any model to obtain conclusions about the relevant

subject matter involves deduction. Indeed, any technique for drawing

conclusions from the axioms of a model can be regarded as that of

carrying out a deduction. In particular, this is true of the

traditional state-transition models. But then the deductions are of a

severely limited form. Unfortunately, the full use of a general

modeling methodology of the kind we are discussing would require far

more versatile deduction technology than is available today. This is a

field in which there is a great deal of ongoing research. We have

nothing new to contribute, and therefore we content ourselves with a

brief survey of what is available.

The really spectacular contribution of computer technology is of

course in the area of numerical computation. Naturally, a usable

computer modeling technology should make it easy for a user to make

numerical calculations as needed in working with a model. What we wish

to emphasize here is that such numerical calculations are themselves

deductions. When we solve the equation x2 = 2 to obtain x = 1.414

"correct to 3 places," we are deducing from the premise x2 = 2, the

conclusion 1.4135 < x < 1.4145.

Computer facilities also exist for efficient algebraic

manipulation. Packages such as MACSYMA and REDUCE can be used quite

effectively to work with algebraic and the elementary transcendental

functions; they can also be used to carry out formal differentiation and

integration. The use of such a capability would be very useful in
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working with a model whose axioms consist of equations (including

differential equations) and inequalities.

However, a general modeling technology cannot be restricted to

axioms of this special form. Hence, we must seek to make available

facilities for deductive reasoning of the most general kind. To begin

with, this includes the propositional calculus, i.e., Boolean reasoning.

This encompasses the logical relations among sentences which hold simply

by virtue of their decomposition using the Boolean connectives V ,..

Now, the problem of determining whether or not a given conclusion

follows from given premises in this way is known to belong to the class

of combinatorial problems called NP-complete, and the problems in this

class are thought to be computationally intractable. Nevertheless,

there are algorithms for testing such inferences which work very well in

practice. (The "worst" cases on which these algorithms are intractable

rarely show up in practice.) So there will be no practical difficulty

in making a Boolean deduction capability available to modelers.

Logical deduction in mathematics requires using the quantifiers V

and 3 as well as the Boolean connectives, i.e., the full predicate

calculus. For the predicate calculus, the problem of determining

whether a given conclusion follows from given premises is known to be

unsolvable, i.e., no algorithm exists. In this difficult situation,

three approaches have been used, but so far no'ne of them has been really

satisfactory. One approach is to find important special cases for which

algorithms do exist. Although there has been a great deal of

interesting work by logicians on this approach, it is of little

practical value. This is because on the one hand the cases included are



-27-

too restrictive, and on the other, the algorithms are not very

efficient. Another approach, which has generated a large literature, is

known as mechanical theorem-proving. This approach uses algorithms that

search for proofs in predicate calculus, terminating only if a proof is

found. The search space can be drastically limited in various ways, but

except for problems of very special forms, efforts to prove theorems in

this way are defeated by a combinatorial explosion. The final approach

is to rely on man-machine interaction, that is, to use so-called "proof

checkers." The user is expected to supply the steps in a deduction, and

the machine verifies their correctness. There are a number of proof

checkers in operation. They tend to be almost painful to use because of

the small deductive steps to which they are limited. An improved

variant would use a modest mechanical theorem-proving capability to

enable a proof checker to take more substantial steps. Systems of this

kind are under development and preliminary indications are hopeful.

The deductive facility available to a modeler should allow all of

the capabilities we have been discussing, with appropriate articulation

among the various kinds of deduction. A user should be able to call, as

needed, for numerical calculation, algebraic manipulation, propositional

calculus testing, or predicate calculus theorem-proving/proof checking.

A single proof being developed may well contain steps of all of these

kinds, and the general system must be capable of dealing with these

steps as part of an integrated proof. There are serious technical

problems to be solved in order to carry out such an implementation. But

this is a problem to be faced not only in connection with a general-

purpose modeling technology, but also for any of the many purposes for
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which a comprehensive, versatile automated deduction capability is

important.

Models like our little GIRL which involve a knowledge operator 0

require an implementation of the completeness axioms. In the presence

of a predicate calculus theorem-prover and/or proof checker, this is

easily supplied. One needs only two rules of inference:

0 (a4~

t

and

t

where I has been proved with no use of axioms. In addition to closure

under modus ponens, it may be desirable (although it is not absolutely

essential) to add closure rules under other rules of inference of

propositional calculus, e.g.,

o
t

0t

0 (a &)

Finally, the deductive capability supplied to a modeler should be

user-extensible. This is in order to allow for formal deductive methods

specific to some model which have not (yet) been incorporated into exist-

K ing rigorously justified mathematics. Examples are Feynman diagrams in

quantum field theory and, earlier, the Heaviside operational calculus.
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IV. SUMMARY AND CONCLUSION

Existing computer models are almost all of one very special type--

state-transition models. Implementations tend to merge model and

implementation in ways that produce methodological and practical

difficulties.

We propose a new methodology by which modelers would be provided

with a general-purpose language for specifying models of arbitrary

character as well as automated and semi-automated deductive capabilities

for their formal manipulation. Even without computer-aided deduction,

such a language could be useful simply for the precise specification of

models, just as very high-level programming languages can be useful for

specifying algorithms, even in the absence of an implementation. With

the current limited state of the art of automated deduction, we could

still hope to offer the user a number of special-purpose deductive

packages, any one of which could be invoked for carrying out appropriate

deductions. A full system of the kind we have been proposing is still

far in the future, but even limited working systems can be expected to

be useful to modelers.




